
Abhijeet Prasad
Software Engineer @ Sentry

Publishing JavaScript 
Libraries Made Easy



Hey I’m Abhijeet (he/him)

I currently work at Sentry

I help maintain Sentry’s JavaScript SDKs



We do a lot at Sentry (20+ JS related SDKs) 



How to publish a package!

1. Make sure namespace is free on https://www.npmjs.com/
2. Create a package.json file and point it to your JS module via an entrypoint
3. Use npm cli to publish your package to npm!
4. Profit!

https://www.npmjs.com/


How to publish a package!

1. Make sure namespace is free on https://www.npmjs.com/
2. Create a package.json file and point it to your library via an entrypoint
3. Use npm cli to publish your package to npm!
4. Profit!

https://www.npmjs.com/


It’s hard to publish robust and extensible libraries

https://twitter.com/acemarke

https://twitter.com/acemarke


The JavaScript landscape is pretty big!

Browsers

Frameworks
Runtimes



Things get complicated

- Multiple runtimes
- ESM/CJS/UMD
- JSX, Compilers, Bundlers 
- TypeScript
- Tree shaking and bundling
- Deps/Dev Deps/Peer Deps
- Sourcemaps
- Docs and changelogs
- Licensing
- Versioning and LTS
- Directives like “use client”



Today we look at

1. Accounting for different JS runtimes
2. Bundling and module formats
3. TypeScript and publishing types
4. Package health - licensing, versioning, security concerns

A lot of this is high level!



JavaScript Runtimes



Publishing Libraries for the Browser

- Have JavaScript version requirements (ES6, ES2020 etc.)
- If you do any transformation (minify/bundle), emit sourcemaps
- Default to emitting ESM if you can
- Make sure to use files field or .npmignore to only publish what is necessary
- Don’t bundle dependencies not required (use dev and peer deps)

Let’s look at some examples!



Should I bundle?

It depends…

- Better for treeshaking if you keep individual files
- Nice for CDN or unpkg users to have pre-bundled and minified files



Non-Browser Runtimes

- There are many competing server runtimes for JavaScript

Node.js, Deno, Cloudflare Workers, Vercel Edge, Bun

- There’s also desktop/mobile/embedded runtimes
- Some of these runtimes follow WinterCG common spec, but not all
- If you require something runtime specific - BE CLEAR ABOUT IT

Same rules as publishing for the browser except you might want to think 
about ESM vs. CJS.



ES Modules (ESM) vs. Common JS Modules (CJS)

- Two different module mechanisms
- Frontend Frameworks + bundlers -> ESM
- Node had CJS first, now supports ESM
- To enable ESM for node, use type: module or use .mjs file extension



ESM and CJS have incompatibilities

- You can’t use ESM in CJS
- ESM imports are asynchronous, CJS imports are synchronous

- ESM is Node 12+, CJS doesn’t work in browsers
- ESM does not support monkeypatching

- There does exist ESM loaders, but this is still experimental API

This means you might have to publish both ESM and CJS (watch out for Dual 
module hazard)

Thing get more complicated when types get involved



TypeScript



TypeScript

- TypeScript can improve the developer experience of your library
- Two options: write Typescript or use JSDoc
- TS means publishing your types - you can choose where though



Publishing TypeScript Types

- Decide on DefinitelyTyped or publishing within your own library
- Make sure to publish TS declaration files instead of raw TS
- Use https://arethetypeswrong.github.io/ by @andrewbranch to check if 

everything is published properly
- You might want to downlevel your types 

https://github.com/sandersn/downlevel-dts

https://arethetypeswrong.github.io/
https://github.com/sandersn/downlevel-dts


A standard setup looks something like this.



I recommend using unbuild

https://github.com/unjs/unbuild

- Generates ESM/CJS and puts them in the right places
- Allows you to easily check your subpath exports and conditional exports

https://github.com/unjs/unbuild


Semver and Changelogs

- MAJOR.MINOR.PATCH
- Decide on a versioning scheme to follow
- Have a public changelog
- Libraries like https://github.com/semantic-release/semantic-release can 

help

https://github.com/semantic-release/semantic-release


Licensing and Docs

- If you want people to use what you’ve built (and it’s open source), always 
add a LICENSE

- https://choosealicense.com/ can help with this
- Clear READMEs and contributing docs can help with contributors
- If you set up JSDoc or TypeScript can auto-generate docs from code

https://choosealicense.com/


Easy library 
publishing?

Making your 
intentions clear



Intentions?

1. Clearly outlining requirements for JS version and runtimes
2. Defining all your package entry points
3. Stating if package has side effects
4. Emitting sourcemaps
5. Following semver and having a update-to-date changelog
6. Having license and contributing guidelines

You’ll run into hurdles - but thats JavaScript for you, enjoy the ride 😄



Thank you!

Twitter: https://twitter.com/imabhiprasad

Bluesky: https://bsky.app/profile/abhiprasad.bsky.social

GitHub: https://github.com/abhiprasad

Open Source JavaScript SDKs: https://github.com/getsentry/sentry-javascript

https://twitter.com/imabhiprasad
https://bsky.app/profile/abhiprasad.bsky.social
https://github.com/abhiprasad
https://github.com/getsentry/sentry-javascript

