Publishing JavaScript
Libraries Made Easy

Abhijeet Prasad
Software ngineer @ Sentry

Hey I'm Abhijeet (he/him)

| currently work at Sentry 5&

| help maintain Sentry’s JavaScript SDKs <=

We do a lot at Sentry (20+ JS related SDKSs)

[~/workspace/sentry-javascript (develop) » exa packages abhijeetprasad@GT9RQO2WW5 |
angular eslint-config-sdk opentelemetry-node tracing-internal
angular-ivy eslint-plugin-sdk overhead-metrics types

astro gatsby react typescript

browser hub remix utils
browser-integration-tests integration-shims replay vercel-edge

bun integrations replay-worker vue

core nextjs serverless wasm

deno node svelte

e2e-tests node-experimental sveltekit

ember node-integration-tests tracing

How to publish a package!

1. Make sure namespace is free on https://www.npmjs.com/

2. Create a package.json file and point it to your JS module via an entrypoint
3. Use npm cli to publish your package to npm!

4, Profit!

https://www.npmjs.com/

How to publish a package!

2. Create a package.json file and point it to your library via an entrypoint

@ Nature's particle Manager Pro Teams Pricing Documentation
nEm = Q sencny Senp signin
1008 packages found 123} 51]»
Sort Packages
ntry/browser
O optimal @sentry/browsel
Official Sentry SDK for browsers P =
O Popularity & sentry-bot published 7.74.0 - a day ago "
O Quality
@sentry/types
O Maintenance Types for all Sentry JavaScript SDKs [R
& sentry-bot published 7.74.0 + a day ago "
@sentry/utils
Utilities for all Sentry JavaScript SDKs | R
A sentry-bot published 7.74.0 + a day ago n
@sentry/core
Base implementation for all Sentry JavaScript SDKs | f—
& sentry-bot published 7.74.0 + a day ago "
@sentry/integrations
Pluggable integrations that can be used to enhance JS SDKs 3

& sentry-bot published 7.74.0 + a day ago

https://www.npmjs.com/

It's hard to publish robust and extensible libraries

<« Post

Mark Erikson
[ELEIETTE
Things | have to keep in mind when publishing a library in 2023:

- Build artifact formats (ESM, CJS, UMD)

- Matrixed with: dev/prod/NODE_ENV builds
- Bundled or individual .js per source

- ‘exports’ setup

- Webpack 4 limits

- TS “‘moduleResolution’ options

- User environments

1/

2:48 PM - Apr 28, 2023 - 113.5K Views

Q2 07 n2 @ 554 M 226 oA

ﬂ, Post your reply Reply

- Behavior differences between bundlers

- Node ESM/CJS modes

- TS typedef output (bundled? individual? ".d.ts, or *.d.mts'?)
- Edge runtimes?

- And now React's new "use client" and RSC constraints

- All of this for upstream deps too

Q Mark Erikson @acemarke - Apr 28

This is getting utterly ridiculous :(

Q2 Mvs Q 156 ih 105K &

https://twitter.com/acemarke

https://twitter.com/acemarke

The JavaScript landscape is pretty big!

Browsers q ' m

§ @ oc BDAV

Frameworks

Runtimes

Things get complicated

Multiple runtimes
ESM/CJS/UMD

- JSX, Compilers, Bundlers

- TypeScript

- Tree shaking and bundling
- Deps/Dev Deps/Peer Deps
- Sourcemaps

- Docs and changelogs

- Licensing

- Versioning and LTS

- Directives like “use client”

Today we look at

Accounting for different JS runtimes

Bundling and module formats

TypeScript and publishing types

Package health - licensing, versioning, security concerns

HwnN =

A lot of this is high level!

L e X YOI

JavaScript Runtimes

HD
!
:ﬂ o

Publishing Libraries for the Browser

- Have JavaScript version requirements (ES6, ES2020 etc.)

- If you do any transformation (minify/bundle), emit sourcemaps

- Default to emitting ESM if you can

- Make sure to use files field or .npmignore to only publish what is necessary
- Don’t bundle dependencies not required (use dev and peer deps)

Let's look at some examples!

Should | bundle?

It depends...

- Better for treeshaking if you keep individual files
- Nice for CDN or unpkg users to have pre-bundled and minified files

UNPKG

Version: 7.74.0
react / cjs Version: 18.2.0

10 files

W integration
m profiling -runtime.development.js applicationfjavascript
I transport x-dev-runtime.production.min.js applicationfjavascript

lient application/javascript N " = =
pplicationfjavascrip B re ev-runtime.profiling.min.js applicationfjavascript

lient.js.map applicationfjson . . .
runtime.development.js applicationfjavascript

B eventbuilder application/javascript
react-jsx-runtime.production.min.js applicationfjavascript

® eventbuilder.js.map application/json
react-jsx-runtime.profiling.min i
P applicationjjavascript a time.p: g.min. application/javascript
B helpers.js.map applicationfison react.development.js applicationfjavascript
applicationfjavascript ® react.production.min.js applicationfjavascript

@ index js.ma applicationfison react.shared-subset.developrr applicationjjavascript
application/javascript react.shared-subset.production.min.js applicationjavascript

applicationfison

Non-Browser Runtimes

There are many competing server runtimes for JavaScript

Node.js, Deno, Cloudflare Workers, Vercel Edge, Bun

There's also desktop/mobile/embedded runtimes
Some of these runtimes follow WinterCG common spec, but not all
If you require something runtime specific - BE CLEAR ABOUT IT

Same rules as publishing for the browser except you might want to think
about ESM vs. CJS.

ES Modules (ESM) vs. Common JS Modules (CJS)

- Two different module mechanisms

- Frontend Frameworks + bundlers -> ESM

- Node had CJS first, now supports ESM

- To enable ESM for node, use type: module or use .mjs file extension

const Sentry = require("@sentry/node");)
import * as Sentry from '@sentry/node'’
function activateSentry() {
Sentry.init(options); function activateSentry() {
Sentry.init(options);

}

b

module.exports = {

} sl export activateSentry;

ESM and CJS have incompatibilities

- You can't use ESM in CJS

ESM imports are asynchronous, CJS imports are synchronous
- ESM is Node 12+, CJS doesn't work in browsers

- ESM does not support monkeypatching
There does exist ESM loaders, but this is still experimental API

This means you might have to publish both ESM and CJS (watch out for Dual
module hazard)

Thing get more complicated when types get involved

TypeScript .

TypeScript
- TypeScript can improve the developer experience of your library

- Two options: write Typescript or use JSDoc
- TS means publishing your types - you can choose where though

function _processEvent(event: Event, hint: EventHint, scope?: Scope): PromiseLike<Event> {}

Publishing TypeScript Types

- Decide on DefinitelyTyped or publishing within your own library

- Make sure to publish TS declaration files instead of raw TS

- Use https://arethetypeswrong.github.io/ by @andrewbranch to check if
everything is published properly

- You might want to downlevel your types cee
. {
https://github.com/sandersn/downlevel-dts raypest: UL/ ypesyindex.d.ts",
+ g "typesVersions":
<ﬁt-)zi{d§types/tndex.d.ts“: [
"build/types-ts3.8/index.d.ts"
)]
5
+

https://arethetypeswrong.github.io/
https://github.com/sandersn/downlevel-dts

A standard setup looks something like this.

o000

i
"main": "dist/cjs/index.cjs",
"module": "dist/esm/index.mjs",

"types": "dist/index.d.ts",

"exports": {

"./package.json": "./package.json",
O
"import": {
"types": "./dist/esm/index.d.mts",
"default": "./dist/esm/index.mjs"
}’
"require": {
s typestut i/ disit/ciis/indextditsis
"default": "./dist/cjs/index.cjs"
}
}!
}}
“files": [
gdifs e

]]

| recommend using unbuild

https://github.com/unjs/unbuild

- Generates ESM/CJS and puts them in the right places
- Allows you to easily check your subpath exports and conditional exports

https://github.com/unjs/unbuild

Semver and Changelogs

- MAJOR.MINOR.PATCH

- Decide on a versioning scheme to follow

- Have a public changelog

- Libraries like https://github.com/semantic-release/semantic-release can
help

@sentry/browser EB

https://github.com/semantic-release/semantic-release

Licensing and Docs

- If you want people to use what you've built (and it's open source), always
add a LICENSE

- https://choosealicense.com/ can help with this

- Clear READMEs and contributing docs can help with contributors

- If you set up JSDoc or TypeScript can auto-generate docs from code

https://choosealicense.com/

Easy library
publishing?

Making your
intentions clear

Intentions?

Clearly outlining requirements for JS version and runtimes
Defining all your package entry points

Stating if package has side effects

Emitting sourcemaps

Following semver and having a update-to-date changelog
Having license and contributing guidelines

o Utk WN =

You'll run into hurdles - but thats JavaScript for you, enjoy the ride @

Thank you!

Twitter: https://twitter.com/imabhiprasad

Bluesky: https://bsky.app/profile/abhiprasad.bsky.social

GitHub: https://github.com/abhiprasad

Open Source JavaScript SDKs: https://github.com/getsentry/sentry-javascript

https://twitter.com/imabhiprasad
https://bsky.app/profile/abhiprasad.bsky.social
https://github.com/abhiprasad
https://github.com/getsentry/sentry-javascript

